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Transformative computing [14, 15] in science and engineering involves problems posed in more
than just the spatial domain. Design optimization of unsteady PDE-based models with quanti-
fied uncertainty is a prototypical example, requiring iterative methods in spatial, temporal, and
stochastic dimensions. Current methods for solving such problems are predominantly based on
the concept that the fundamental building block is the solution of a deterministic PDE model, or
perhaps one time step of a transient model. This is practical: it permits comfortable partitioning
of mathematical analysis and relatively unintrusive software interfaces. This approach encourages
algorithms that single-mindedly pursue independence in the stochastic dimension, which is nat-
urally suited to “horizontal” parallel distributions. Unfortunately, this leaves developers of the
PDE models banging their heads against the familiar challenges [1, 12] of efficiently utilizing in-
creasingly precious memory bandwidth, hiding and reducing synchronization costs, and obtaining
vectorization. Although some of today’s methods have been successful at tackling these challenges
in the spatial domain, exemplified by the success of spectral element methods, it has proven diffi-
cult to balance the competing demands of vectorization, locality, and adaptive resolution for less
smooth problems and those with intricate geometry. Meanwhile, the stochastic and temporal
dimensions provide structure that is ideally suited to extreme-scale architectures, if
only they could be promoted to first-class citizens, alongside the spatial dimensions, in
algorithmic analysis and in software. Exploiting this structure in “full-space” methods will require
crosscutting development [3]: improved convergence theory, efficient hardware-adapted algorithms,
high-quality software libraries, and programming tools and run-time systems [6] to facilitate the
development of libraries and applications.

Stochastic and temporal dimensions are fundamentally more regular than spatial dimensions:
they do not have geometry, have limited forms of boundary conditions, and tend to be smoother.
The stochastic and temporal dimensions offer two stages of algorithmic transformation: aggrega-
tion and synergy. The first stage changes the parallel distribution to vectorize over ensembles
and to reuse any constant data that may be shared between the ensemble members. It can often be
applied without new mathematical developments, though it benefits from new methods to expose
parallelism, such as parallel-in-time integrators [8]. We believe the main reason for aggregation in
the stochastic and temporal dimensions not being more widespread is lack of programming tools
that support maintainable vectorization “across concerns” that are traditionally the managed by
different people or different software components. For encapsulation and maintainability, it is im-
portant that forward models be developed and debugged without the complexity introduced by
these additional dimensions. Some amount of aggregation is necessary for the second stage, for
which improved programming tools are even more important. But the true value of synergy across
stochastic and temporal dimensions lies in the immense scope for mathematical and algorithmic
advances.
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Examples
To demonstrate this scope, we review examples of today’s successful time-integration and stochastic
algorithms that exploit structure in more sequential forms, and highlight more integrative extensions
to accelerate convergence, improve vectorization, and reduce communication demands.
Time Integration. The standard solution method [10] for fully implicit Runge-Kutta factors the
Jacobian for the first stage, then reuses it (with a spectral decomposition of the method’s matrix of
coefficients) in a modified Newton method for all stages in the step. Time integration packages using
implicit methods such as BDFs either lag the preconditioner in Newton-Krylov methods [11] or lag
the Jacobian in modified Newton methods [5]. Rosenbrock-W [10] methods bring this “lagging”
concept inside the time discretization, with tolerance for inexactness. In case of a parabolic problem
with smooth source term, the “frozen τ” [2] method can be used to obtain the effect of solving
all stages without even visiting a fine grid on each stage, but local error estimators still need to
compare τ corrections from nearby stages. If we combine this lagging/reuse concept with a time-
parallel formulation as permitted by Parareal [9] or spectral deferred correction [7], the solver sees
a space-time problem with structured reuse in the time dimension. Reuse of a preconditioner (or
matrix) in this context amortizes setup costs such as coarse grid construction in algebraic multigrid
and factorization for direct solvers, amortizes memory bandwidth by correcting multiple vectors
at once, and amortizes communication latency by solving several vectors at once. The principles
behind block and recycling Krylov methods [13] can likely be combined to support the interaction
of right-hand sides caused by the interaction of the stage equations. This reuse concept can also
be extended to nonlinear solvers [4] and can be incorporated into multilevel solution algorithms.
For example, an FAS multigrid method applied to an ensemble of nearby systems might reuse the
cell-linearization in a nonlinear smoother, thus vectorizing residual evaluation and correction over
all stages. Selective use of multiplicative-in-time smoothers (waveform relaxation) smoothers is also
readily available to speed convergence [16] especially in cases where multigrid interpolation in the
time direction commits phase errors.
Continuation and Ensembles. In global parameter continuation, parameter estimation, and
design optimization, it is common for the difference between nearby problem instances to be rep-
resentable in a coarse grid or locally-valid reduced-order model, implying that significant fine-grid
computation and setup can be reused. Any computation that is not shared across the ensemble
(e.g., coarse grids and error estimators) can be easily vectorized, leading to better FPU use, more
regular memory access, and fewer messages. The techniques highlighted in the last section can also
be used in this context, typically with weaker coupling between ensemble members.
Ramifications
Instead of focusing on parallel methods that emphasize strict independence, we advocate methods
that exploit structure to aggregate communication, vectorize, and reuse. By promoting stochastic
and temporal dimensions to be on equal footing with spatial dimensions, we expose a myriad of
opportunities to relieve the performance and scalability challenges inherent to solving problems in
the spatial dimension only. Research priorities to effectively utilize this structure include:

• extending analysis results to “full-space” methods, incorporating available structure in light
of plausible performance models for vectorization and communication,

• adaptive recognition of reusability/synergistic structure, and associated load balancing,
• evolution of software interfaces to preserve more nuanced problem structure,
• development of programming tools that allow manipulation of logical vector length and related

data structure transformations without significantly complicating the independent code, and
while allowing occasional cross-lane operations.
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